Splitting a TCP connection into two connections.

The advantage of this scheme is that both connections are now homogeneous. Timeouts on the first connection can slow the sender down, whereas timeouts on the second one can speed it up. Other parameters can also be tuned separately for the two connections. The disadvantage of the scheme is that it violates the semantics of TCP. Since each part of the connection is a full TCP connection, the base station acknowledges each TCP segment in the usual way. Only now, receipt of an acknowledgement by the sender does not mean that the receiver got the segment, only that the base station got it.
A different solution, due to Balakrishnan et al. (1995), does not break the semantics of TCP. It works by making several small modifications to the network layer code in the base station. One of the changes is the addition of a snooping agent that observes and caches TCP segments going out to the mobile host and acknowledgements coming back from it. When the snooping agent sees a TCP segment going out to the mobile host but does not see an acknowledgement coming back before its (relatively short) timer goes off, it just retransmits that segment, without telling the source that it is doing so. It also retransmits when it sees duplicate acknowledgements from the mobile host go by, invariably meaning that the mobile host has missed something. Duplicate acknowledgements are discarded on the spot, to avoid having the source misinterpret them as congestion.
One disadvantage of this transparency, however, is that if the wireless link is very lossy, the source may time out waiting for an acknowledgement and invoke the congestion control algorithm. With indirect TCP, the congestion control algorithm will never be started unless there really is congestion in the wired part of the network.

what is Nagle's algorithm?

the load placed on the network by the receiver, the sender is still operating inefficiently by sending 41-byte packets containing 1 byte of data. A way to reduce this usage is known as Nagle's algorithm (Nagle, 1984). What Nagle suggested is simple: when data come into the sender one byte at a time, just send the first byte and buffer all the rest until the outstanding byte is acknowledged. Then send all the buffered characters in one TCP segment and start buffering again until they are all acknowledged. If the user is typing quickly and the network is slow, a substantial number of characters may go in each segment, greatly reducing the bandwidth used. The algorithm additionally allows a new packet to be sent if enough data have trickled in to fill half the window or a maximum segment.

Tunneling a packet from Paris to London

To send an IP packet to host 2, host 1 constructs the packet containing the IP address of host 2, inserts it into an Ethernet frame addressed to the Paris multiprotocol router, and puts it on the Ethernet. When the multiprotocol router gets the frame, it removes the IP packet, inserts it in the payload field of the WAN network layer packet, and addresses the latter to the WAN address of the London multiprotocol router. When it gets there, the London router removes the IP packet and sends it to host 2 inside an Ethernet frame.

The WAN can be seen as a big tunnel extending from one multiprotocol router to the other. The IP packet just travels from one end of the tunnel to the other, snug in its nice box. It does not have to worry about dealing with the WAN at all. Neither do the hosts on either Ethernet. Only the multiprotocol router has to understand IP and WAN packets. In effect, the entire distance from the middle of one multiprotocol router to the middle of the other acts like a serial line.

what are The Politics of Telephones

For decades prior to 1984, the Bell System provided both local and long distance service throughout most of the United States. In the 1970s, the U.S. Federal Government came to believe that this was an illegal monopoly and sued to break it up. The government won, and on January 1, 1984, AT&T was broken up into AT&T Long Lines, 23 BOCs (Bell Operating Companies), and a few other pieces. The 23 BOCs were grouped into seven regional BOCs (RBOCs) to make them economically viable. The entire nature of telecommunication in the United States was changed overnight by court order (not by an act of Congress).

The exact details of the divestiture were described in the so-called MFJ (Modified Final Judgment, an oxymoron if ever there was one—if the judgment could be modified, it clearly was not final). This event led to increased competition, better service, and lower long distance prices to consumers and businesses. However, prices for local service rose as the cross subsidies from long-distance calling were eliminated and local service had to become self supporting. Many other countries have now introduced competition along similar lines.
To make it clear who could do what, the United States was divided up into 164 LATAs (Local Access and Transport Areas). Very roughly, a LATA is about as big as the area covered by one area code. Within a LATA, there was one LEC (Local Exchange Carrier) that had a monopoly on traditional telephone service within its area. The most important LECs were the BOCs, although some LATAs contained one or more of the 1500 independent telephone companies operating as LECs.
As part of the MFJ, the IXCs were forbidden to offer local telephone service and the LECs were forbidden to offer inter-LATA telephone service, although both were free to enter any other business, such as operating fried chicken restaurants. In 1984, that was a fairly unambiguous statement. Unfortunately, technology has a funny way of making the law obsolete. Neither cable television nor mobile phones were covered by the agreement. As cable television went from one way to two way and mobile phones exploded in popularity, both LECs and IXCs began buying up or merging with cable and mobile operators.

By 1995, Congress saw that trying to maintain a distinction between the various kinds of companies was no longer tenable and drafted a bill to allow cable TV companies, local telephone companies, long-distance carriers, and mobile operators to enter one another's businesses. The idea was that any company could then offer its customers a single integrated package containing cable TV, telephone, and information services and that different companies would compete on service and price. The bill was enacted into law in February 1996. As a result, some BOCs became IXCs and some other companies, such as cable television operators, began offering local telephone service in competition with the LECs.
One interesting property of the 1996 law is the requirement that LECs implement local number portability. This means that a customer can change local telephone companies without having to get a new telephone number. This provision removes a huge hurdle for many people and makes them much more inclined to switch LECs, thus increasing competition. As a result, the U.S. telecommunications landscape is currently undergoing a radical restructuring. Again, many other countries are starting to follow suit. Often other countries wait to see how this kind of experiment works out in the U.S. If it works well, they do the same thing; if it works badly, they try something else.

Structure of the Telephone System

Soon after Alexander Graham Bell patented the telephone in 1876 (just a few hours ahead of his rival, Elisha Gray), there was an enormous demand for his new invention. The initial market was for the sale of telephones, which came in pairs. It was up to the customer to string a single wire between them. The electrons returned through the earth. If a telephone owner wanted to talk to n other telephone owners, separate wires had to be strung to all n houses. Within a year, the cities were covered with wires passing over houses and trees in a wild jumble.

what is Teledesic?

Iridium is targeted at telephone users located in odd places. Our next example, Teledesic, is targeted at bandwidth-hungry Internet users all over the world. It was conceived in 1990 by mobile phone pioneer Craig McCaw and Microsoft founder Bill Gates, who was unhappy with the snail's pace at which the world's telephone companies were providing high bandwidth to computer users. The goal of the Teledesic system is to provide millions of concurrent Internet users with an uplink of as much as 100 Mbps and a downlink of up to 720 Mbps using a small, fixed, VSAT-type antenna, completely bypassing the telephone system. To telephone companies, this is pie-in-the-sky.

The original design was for a system consisting of 288 small-footprint satellites arranged in 12 planes just below the lower Van Allen belt at an altitude of 1350 km. This was later changed to 30 satellites with larger footprints. Transmission occurs in the relatively uncrowded and high-bandwidth Ka band. The system is packet-switched in space, with each satellite capable of routing packets to its neighboring satellites. When a user needs bandwidth to send packets, it is requested and assigned dynamically in about 50 msec. The system is scheduled to go live in 2005 if all goes as planned.

Low-Earth Orbit Satellites

Moving down in altitude, we come to the LEO (Low-Earth Orbit) satellites. Due to their rapid motion, large numbers of them are needed for a complete system. On the other hand, because the satellites are so close to the earth, the ground stations do not need much power, and the round-trip delay is only a few milliseconds. In this section we will examine three examples, two aimed at voice communication and one aimed at Internet service.

Iridium

As mentioned above, for the first 30 years of the satellite era, low-orbit satellites were rarely used because they zip into and out of view so quickly. In 1990, Motorola broke new ground by filing an application with the FCC asking for permission to launch 77 low-orbit satellites for the Iridium project (element 77 is iridium). The plan was later revised to use only 66 satellites, so the project should have been renamed Dysprosium (element 66), but that probably sounded too much like a disease. The idea was that as soon as one satellite went out of view, another would replace it. This proposal set off a feeding frenzy among other communication companies. All of a sudden, everyone wanted to launch a chain of low-orbit satellites.

After seven years of cobbling together partners and financing, the partners launched the Iridium satellites in 1997. Communication service began in November 1998. Unfortunately, the commercial demand for large, heavy satellite telephones was negligible because the mobile phone network had grown spectacularly since 1990. As a consequence, Iridium was not profitable and was forced into bankruptcy in August 1999 in one of the most spectacular corporate fiascos in history. The satellites and other assets (worth $5 billion) were subsequently purchased by an investor for $25 million at a kind of extraterrestrial garage sale. The Iridium service was restarted in March 2001.

Iridium's business was (and is) providing worldwide telecommunication service using hand-held devices that communicate directly with the Iridium satellites. It provides voice, data, paging, fax, and navigation service everywhere on land, sea, and air. Customers include the maritime, aviation, and oil exploration industries, as well as people traveling in parts of the world lacking a telecommunications infrastructure.
(e.g., deserts, mountains, jungles, and some Third World countries)
A groan grasps the peanut near the offending anthology.