A. 30 networks and 6 hosts.
B. 6 networks and 30 hosts.
C. 8 networks and 32 hosts.
D. 32 networks and 18 hosts.
E. 14 networks and 14 hosts.
F. None of the above
Answer: E
Explanation:
A 28 bit subnet mask (11111111.11111111.11111111.11110000) applied to a class C network uses a 4 bits for networks, and leaves 4 bits for hosts. Using the 2n-2 formula, we have 24-2 (or 2x2x2x2-2) which gives us 14 for both the number of networks, and the number of hosts.
Incorrect Answers:
A. This would be the result of a /29 (255.255.255.248) network.
B. This would be the result of a /27 (255.255.255.224) network.
C. This is not possible, as we must subtract two from the subnets and hosts for the network and broadcast addresses.
D. This is not a possible combination of networks and hosts.
B. 6 networks and 30 hosts.
C. 8 networks and 32 hosts.
D. 32 networks and 18 hosts.
E. 14 networks and 14 hosts.
F. None of the above
Answer: E
Explanation:
A 28 bit subnet mask (11111111.11111111.11111111.11110000) applied to a class C network uses a 4 bits for networks, and leaves 4 bits for hosts. Using the 2n-2 formula, we have 24-2 (or 2x2x2x2-2) which gives us 14 for both the number of networks, and the number of hosts.
Incorrect Answers:
A. This would be the result of a /29 (255.255.255.248) network.
B. This would be the result of a /27 (255.255.255.224) network.
C. This is not possible, as we must subtract two from the subnets and hosts for the network and broadcast addresses.
D. This is not a possible combination of networks and hosts.