The Application layer of the OSI model marks the spot where users actually communicate to the computer. This layer only comes into play when it’s apparent that access to the network is going to be needed soon. Take the case of Internet Explorer (IE). You could uninstall every trace of networking components from a system, such as TCP/IP, NIC card, etc., and you could still use IE to view a local HTML document—no problem. But things would definitely get messy if you tried to do something like view an HTML document that must be retrieved using HTTP, or nab a file with FTP. That’s because IE will respond to requests such as those by attempting to access the Application layer. And what’s happening is that the Application layer is acting as an interface between the actual application program—which isn’t at all a part of the layered structure—and the next layer down, by providing ways for the application to send information down through the protocol stack. In other words, IE doesn’t truly reside within the Application layer—it interfaces with Application-layer protocols when it needs to deal with remote resources.
The Application layer is also responsible for identifying and establishing the availability of the intended communication partner, and determining whether sufficient resources for the intended communication exist. These tasks are important because computer applications sometimes require more than only desktop resources. Often, they’ll unite communicating components from more than one network application. Prime examples are file transfers and e-mail, as well as enabling remote access, network management activities, client/server processes, and information location. Many network applications provide services for communication over enterprise networks, but for present and future internetworking, the need is fast developing to reach beyond the limits of current physical networking. Today, transactions and information exchanges between organizations are broadening to require internetworking applications such as the following:
World Wide Web (WWW) Connects countless servers (the number seems to grow with each passing day) presenting diverse formats. Most are multimedia and can include graphics, text, video, and sound. (And as pressure to keep up the pace mounts, websites are only getting slicker and snappier. Keep in mind, the snazzier the site, the more resources it requires. You’ll see why I mention this later.) Netscape Navigator and IE simplify both accessing and viewing websites. E-mail gateways Versatile; can use Simple Mail Transfer Protocol (SMTP) or the X.400 standard to deliver messages between different e-mail applications.
Electronic data interchange (EDI) A composite of specialized standards and processes that facilitates the flow of tasks such as accounting, shipping/receiving, and order and inventory tracking between businesses.
Special interest bulletin boardsInclude the many Internet chat rooms where people can “meet” (connect) and communicate with each other either by posting messages or by typing a live conversation. They can also share public-domain software.
Internet navigation utilities Include applications such as Gopher and WAIS, as well as search engines such as Google and Yahoo!, which help users locate the resources and information they need on the Internet.
Financial transaction services Target the financial community. They gather and sell information pertaining to investments, market trading, commodities, currency exchange rates, and credit data to their subscribers.
The Application layer is also responsible for identifying and establishing the availability of the intended communication partner, and determining whether sufficient resources for the intended communication exist. These tasks are important because computer applications sometimes require more than only desktop resources. Often, they’ll unite communicating components from more than one network application. Prime examples are file transfers and e-mail, as well as enabling remote access, network management activities, client/server processes, and information location. Many network applications provide services for communication over enterprise networks, but for present and future internetworking, the need is fast developing to reach beyond the limits of current physical networking. Today, transactions and information exchanges between organizations are broadening to require internetworking applications such as the following:
World Wide Web (WWW) Connects countless servers (the number seems to grow with each passing day) presenting diverse formats. Most are multimedia and can include graphics, text, video, and sound. (And as pressure to keep up the pace mounts, websites are only getting slicker and snappier. Keep in mind, the snazzier the site, the more resources it requires. You’ll see why I mention this later.) Netscape Navigator and IE simplify both accessing and viewing websites. E-mail gateways Versatile; can use Simple Mail Transfer Protocol (SMTP) or the X.400 standard to deliver messages between different e-mail applications.
Electronic data interchange (EDI) A composite of specialized standards and processes that facilitates the flow of tasks such as accounting, shipping/receiving, and order and inventory tracking between businesses.
Special interest bulletin boardsInclude the many Internet chat rooms where people can “meet” (connect) and communicate with each other either by posting messages or by typing a live conversation. They can also share public-domain software.
Internet navigation utilities Include applications such as Gopher and WAIS, as well as search engines such as Google and Yahoo!, which help users locate the resources and information they need on the Internet.
Financial transaction services Target the financial community. They gather and sell information pertaining to investments, market trading, commodities, currency exchange rates, and credit data to their subscribers.